Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 119(41): e2209042119, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2288486

ABSTRACT

Viruses employ a variety of strategies to escape or counteract immune responses, including depletion of cell surface major histocompatibility complex class I (MHC-I), that would ordinarily present viral peptides to CD8+ cytotoxic T cells. As part of a screen to elucidate biological activities associated with individual severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral proteins, we found that ORF7a reduced cell surface MHC-I levels by approximately fivefold. Nevertheless, in cells infected with SARS-CoV-2, surface MHC-I levels were reduced even in the absence of ORF7a, suggesting additional mechanisms of MHC-I down-regulation. ORF7a proteins from a sample of sarbecoviruses varied in their ability to induce MHC-I down-regulation and, unlike SARS-CoV-2, the ORF7a protein from SARS-CoV lacked MHC-I downregulating activity. A single amino acid at position 59 (T/F) that is variable among sarbecovirus ORF7a proteins governed the difference in MHC-I downregulating activity. SARS-CoV-2 ORF7a physically associated with the MHC-I heavy chain and inhibited the presentation of expressed antigen to CD8+ T cells. Specifically, ORF7a prevented the assembly of the MHC-I peptide loading complex and caused retention of MHC-I in the endoplasmic reticulum. The differential ability of ORF7a proteins to function in this way might affect sarbecovirus dissemination and persistence in human populations, particularly those with infection- or vaccine-elicited immunity.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes , COVID-19 , Histocompatibility Antigens Class I , Viral Proteins , Amino Acids , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Histocompatibility Antigens Class I/immunology , Humans , Major Histocompatibility Complex , Peptides , SARS-CoV-2 , Viral Proteins/immunology
2.
Nat Commun ; 13(1): 4888, 2022 08 19.
Article in English | MEDLINE | ID: covidwho-2000886

ABSTRACT

Efforts to cure HIV have focused on reactivating latent proviruses to enable elimination by CD8+ cytotoxic T-cells. Clinical studies of latency reversing agents (LRA) in antiretroviral therapy (ART)-treated individuals have shown increases in HIV transcription, but without reductions in virologic measures, or evidence that HIV-specific CD8+ T-cells were productively engaged. Here, we show that the SARS-CoV-2 mRNA vaccine BNT162b2 activates the RIG-I/TLR - TNF - NFκb axis, resulting in transcription of HIV proviruses with minimal perturbations of T-cell activation and host transcription. T-cells specific for the early gene-product HIV-Nef uniquely increased in frequency and acquired effector function (granzyme-B) in ART-treated individuals following SARS-CoV-2 mRNA vaccination. These parameters of CD8+ T-cell induction correlated with significant decreases in cell-associated HIV mRNA, suggesting killing or suppression of cells transcribing HIV. Thus, we report the observation of an intervention-induced reduction in a measure of HIV persistence, accompanied by precise immune correlates, in ART-suppressed individuals. However, we did not observe significant depletions of intact proviruses, underscoring challenges to achieving (or measuring) HIV reservoir reductions. Overall, our results support prioritizing the measurement of granzyme-B-producing Nef-specific responses in latency reversal studies and add impetus to developing HIV-targeted mRNA therapeutic vaccines that leverage built-in LRA activity.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , HIV Infections , HIV-1 , BNT162 Vaccine , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Granzymes , HIV Infections/immunology , Humans , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , Virus Latency , mRNA Vaccines , nef Gene Products, Human Immunodeficiency Virus/genetics
4.
Curr Opin HIV AIDS ; 16(1): 1-2, 2021 01.
Article in English | MEDLINE | ID: covidwho-1317931
6.
Blood ; 136(25): 2905-2917, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-890058

ABSTRACT

T-cell responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described in recovered patients, and may be important for immunity following infection and vaccination as well as for the development of an adoptive immunotherapy for the treatment of immunocompromised individuals. In this report, we demonstrate that SARS-CoV-2-specific T cells can be expanded from convalescent donors and recognize immunodominant viral epitopes in conserved regions of membrane, spike, and nucleocapsid. Following in vitro expansion using a good manufacturing practice-compliant methodology (designed to allow the rapid translation of this novel SARS-CoV-2 T-cell therapy to the clinic), membrane, spike, and nucleocapsid peptides elicited interferon-γ production, in 27 (59%), 12 (26%), and 10 (22%) convalescent donors (respectively), as well as in 2 of 15 unexposed controls. We identified multiple polyfunctional CD4-restricted T-cell epitopes within a highly conserved region of membrane protein, which induced polyfunctional T-cell responses, which may be critical for the development of effective vaccine and T-cell therapies. Hence, our study shows that SARS-CoV-2 directed T-cell immunotherapy targeting structural proteins, most importantly membrane protein, should be feasible for the prevention or early treatment of SARS-CoV-2 infection in immunocompromised patients with blood disorders or after bone marrow transplantation to achieve antiviral control while mitigating uncontrolled inflammation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cell Culture Techniques/methods , Immunotherapy, Adoptive/methods , SARS-CoV-2/immunology , Adult , Aged , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/immunology , Male , Membrane Proteins/immunology , Middle Aged , Viral Proteins/immunology , Young Adult , COVID-19 Drug Treatment
7.
J Infect Dis ; 222(6): 899-902, 2020 08 17.
Article in English | MEDLINE | ID: covidwho-628335

ABSTRACT

False-negative severe acute respiratory syndrome coronavirus 2 test results can negatively impact the clinical and public health response to coronavirus disease 2019 (COVID-19). We used droplet digital polymerase chain reaction (ddPCR) to demonstrate that human DNA levels, a stable molecular marker of sampling quality, were significantly lower in samples from 40 confirmed or suspected COVID-19 cases that yielded negative diagnostic test results (ie, suspected false-negative test results) compared with a representative pool of 87 specimens submitted for COVID-19 testing. Our results support suboptimal biological sampling as a contributor to false-negative COVID-19 test results and underscore the importance of proper training and technique in the collection of nasopharyngeal specimens.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Specimen Handling/methods , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , False Negative Reactions , Humans , Nasopharynx/virology , Pandemics , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2 , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL